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Exercise 1: Group explanation

1. Divide yourself in small group (3 ppl)
2. Discuss the following example taken from the lecture, focusing on understanding what is happening.
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8.2.9 Example 1: Photon-flux dependent distributions
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A. Ulku et al.,, A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).
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8.2.9 Example 2: Fluorescence Lifetime — Time-Resolved
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D. Li, Strathclyde Univ. (2016).
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8.2.9 Example 2: Fluorescence Lifetime — Time-Resolved
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A. Ulku et al.,, Large-Format Time-Gated SPAD Cameras for Real-Time Phasor-Based FLIM. EPFL These 8311 (2021).
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8.2.9 Example 2:

Fluorescence Lifetime — Time-Resolved
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A. Ulku et al.,, A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).
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8.2.9 Example 3: Real Life Truths — LIDAR & Timing Jitter in SPADs
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L] C. Niclass et al., A 128x128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. |EEE JSSC 43 (2008).
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8.2.9 Example 3: Real Life Truths — LIDAR & Timing Jitter in SPADs
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A. R. Ximenes et al., A Modular, Direct Time-of-Flight Depth Sensor in 45/65-nm 3-D-Stacked CMOS Technology. |EEE JSSC 54 (2019).
— C.Niclass et al., A 128x128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. IEEE JSSC 43 (2008).
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8.2.9 Example 4: Real Life Truths — Scintillation Light
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L. Braga et al., ISSCC, 2013
GE Discovery 1Q, Nov 2016

aqua | C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics Slide 9 =Pr-L



8.2.9 Example 4: Real Life Truths — Scintillation Light
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8.2.9 Example 4: Real Life Truths — Scintillation Light
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Figure 10. Scintillation decay and rise time of BGO measured with a time correlated single photon counting (TCSPC) setup using

511 keV annihilation gammas (Gundacker et al 2016b). The figure on the right hand side shows a pronounced Cherenkov peak at

the onset of the scintillation emission with a relative abundance of 0.172% compared to the total amount of photons detected by the

stop detector of the TCSPC setup.

o

N

[ 4

S(

Y
h

S(
Cl

Fast vs.

low”
intillation
hotons in a
eavy
vintillating
ystal

Gundacker S, Auffray E, Pauwels K and Lecoq P Measurement of intrinsic rise times for various L(Y)SO and LUAG scintillators with a
— general study of prompt photons to achieve 10 ps in TOF-PET. 0P Phys. Med. Biol. 61 2802—-37
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Exercise 2: Missed Photon Count

= A single photon detector (active area of 15x15 um?, fill factor of 20%) is
illuminated with a continuous wave red laser (633 nm) with a uniform surface
power density of 2 uW/cm?.

= The detector has an average photon detection probability (PDP) at 633 nm of
35%.

= |f the dead time of the detector (t,, time for the detector to recover operation
after clicking) is of 2 ns, what is the probability that photons are missed during
detector’s dead time?
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Exercise 3: Moment Generating Function

= (Obtain the moment generating function of the normal distribution
X~N(u,d?). Calculate the first three moments.

» The moment generating function (MGF) of a RV X is defined as:

Z epy(x), if X is discrete *
MGF: ¢(t) = E{e"*} =1 _*
f et fi (x) dx, if X is continuous *
—00
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Homework 1: Rare disease

= Arare disease affects 1 person every 100°000. The SV researchers in EPFL are developing a new
test method, which shows a sensitivity of 0.8 and a specificity of 0.9 in the 37 phase trial. What is
the probability that a patient is affected by this disease if the result is positive in the real world?

= NB: the definition of sensitivity and specificity is given by the confusion matrix below
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https://manisha-sirsat.blogspot.com/2019/04 /confusion-matrix.html
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Homework 2: Skew and Kurtosis

= Using the MGF, demonstrate that the skew of the normal distribution is
Zero.

= Then, calculate the kurtosis of the exponential.
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Homework 3: (Matlab) distributions

= Reproduce with Matlab the different Random Variable distributions
encountered in the Week 2 lecture.
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Homework 4: Usefulness of Bayes” Theorem

= A company produces single-photon cameras with three production lines:

the first one (line A) has 10% of defective devices, the second one (line
B) 20% and the third one (line C) 30% (not a very reliable company...).

= Usually, these three production lines cover respectively 15%, 35% and
50% of the total production. We bought a device and we found it
defective.

= Whatis it the probability that the defective device is from line C?
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